DØ Status and Prospects

DOE Program Review, Fermilab, March 19, 2002

John Womersley

Fermi National Accelerator Laboratory, Batavia, Illinois http://www-d0.fnal.gov/~womersle/womersle.html

- DØ is an international collaboration of ~ 600 physicists from 18 nations who have designed, built and operate a collider detector at the Tevatron
- Physics goals
 - Precise study of the known quanta of the Standard Model
 - Weak bosons, top quark, QCD, B-physics
 - Search for particles, forces beyond those known
 - Higgs, supersymmetry, extra dimensions, other new phenomena
- Driven by these goals, the detector emphasises
 - Electron, muon and tau identification
 - Jets and missing transverse energy
 - Flavor tagging through displaced vertices and leptons

The past year

- About 25 pb⁻¹ delivered so far
- Used for commissioning of
 - Detectors
 - Offline processing
 - Worldwide data access
 - Analysis
 - e, μ, jets, EM and jet energy scales, etc.

DØ detector roll-in

~ 12 pb⁻¹ now on tape

Silicon Microstrip Tracker

- ~ 800,000 channels
- 6 barrels with interspersed disks
- 4 external disks for forward tracking
 (2 < |η| < 3)
- 4 layers of single sided (axial) and double sided (axial+stereo) detectors
- 3D track reconstruction capabilities

SMT half cylinder

Barrels: 95.2% operational F-disks: 95.8% operational H-disks: 86.5% operational

Silicon tracking

Whole DØ Detector moved ~ 5mm (November 2001) to center it on the beamline

Successful within a few hundred microns

Meets requirements of Level 1 and Level 2 track triggers

Central Fiber Tracker

8 layers of axial and stereo fibers (20 < r < 51 cm), 77k channels

 ~12m long clear light-guides to Visible Light Photon Counters (VLPC) under detector

VLPC

- 9K operating temperature
- 85% QE, excellent S/N
- Fast pick-off for trigger

Axial: 100% readout; Stereo: 52% readout Fully commissioned by mid-April

Track reconstruction

DCA resolution \sim 50 μm (using as built + surveyed alignment) beam spot \sim 30-40 μm

Calorimeter

- Uranium-Liquid Argon
 - stable, uniform response, radiation hard, fine segmentation
- Uniform, hermetic, full coverage
 - $|\eta| < 4.2$
- Compensating (e/ π ~1)
- Good energy resolution

Excellent performance demonstrated in Run 1

100% commissioned~55K readout channels~0.1% dead/noisy

Calorimeter performance

- As in Run 1, the EM energy scale is set by Z → e⁺e⁻
 - EM resolution modeled well by Monte Carlo

- Missing E_T important for new physics searches
 - SUSY, extra dimensions, etc.
- Determine ME_T resolution from inclusive di-electron sample with at least one track match (Z, DY)
- Snapshot of present performance

Muon System

- Coverage to |η|<2
- Scintillator trigger planes plus drift tubes for track reconstruction
- Rough standalone momentum measurement, to be used with inner tracking
- Thorough shielding and good time resolution (~2.5 ns) reduces out-oftime backgrounds and cosmics

Muon system 100% commissioned

Trigger systems

One area where there is still work to be done

- Level 1
 - Calorimeter and muon system triggers working very well

Level 1 central track trigger coming

Evolution of our trigger matches laboratory's luminosity plan

- Level 2
 - Technically ready to reject but still a few weeks' work on algorithms
 - Silicon track trigger coming this summer
- DAQ
 - Technical problems with baseline implementation led to decision to move to an ethernet based system
 - uses single-board computers in VME crates and Cisco switches
 - Strong team, good progress
 - excellent role played by Fermilab Computing Division
 - Adiabatic upgrade path with full system in place this summer

switched to new software at end of March

- Level 3
 - 48-node Linux level 3 farm installed, working and selecting events:

Forward Proton Detector

Scintillating fiber detectors in Roman pots near beam used to tag protons and anti-protons

 ξ (= $\Delta p/p$) distribution for a sample of clean elastic events:

Commissioning in progress, integration with central detector in summer

On the road to b-physics

On the road to b cross sections

- Cross section consistent in shape with DØ Run I results in same kinematic region
- p_T of the muon relative to the jet:

= evidence for b-quark content

On the road to jet cross sections

"Run 2 cone" algorithm

Preliminary correction for jet energy scale,
but no unsmearing of resolution effects

Note that the jet cross section for $E_T > 400 \text{ GeV}$ is ten times larger at 1.96 TeV than at 1.8 TeV

On the road to electroweak physics

Require ≥1 track-EM cluster match

Z cross section extracted Consistent with expectations

$W \rightarrow ev$

 Background subtracted transverse mass agrees with Monte Carlo:

W cross section extracted Consistent with expectations

$W \rightarrow \mu \nu$

Muon $p_T = 37$ GeV, charge -1 Transverse mass = 78 GeV

2.6 GeV (MIP) in calorimeter

11-hit central track with DCA = $50\mu m$

W_γ Candidate Event

е	γ	
$E_{T} = 31.8 \text{ GeV}$	$E_{T} = 17.8 \text{ GeV}$	
$p_{T} = 16.4 \text{ GeV}$	$\eta = -0.01$	
$\eta = -0.13$	$\varphi = 1.42$	
$\varphi = 1.89$	No track match	
Charge = -1		
$ME_T = 45 \text{ GeV}, M_T(e+ME_T) = 76 \text{ GeV}$ $M_T(e_{\gamma}+ME_T) = 95 \text{ GeV}$		

 W_{γ} events test anomalous VB couplings and other new physics scenarios

$$M_T(e+ME_T) = 76 \text{ GeV}$$

 $M_T(e\gamma+ME_T) = 95 \text{ GeV}$

DØ Run 2 Preliminary

On the road to top: W+4 jets candidates

e1	j1	j2	j3	j4
$E_T = 99$ GeV $\eta = -0.53$ $\varphi = 5.94$ $Low-p_T$ $track$ $match$	$E_T = 68$ GeV $\eta = 1.62$ $\phi = 6.03$	$E_T = 57$ GeV $\eta = 0.69$ $\phi = 3.38$	$E_T = 35$ GeV $\eta = 1.27$ $\phi = 2.29$	$E_T = 26$ GeV $\eta = 1.83$ $\phi = 2.90$
ME - 62 CoV M (01+ME) - 156 CoV				

 $ME_T = 62 \text{ GeV}, M_T(e1+ME_T) = 156 \text{ GeV}$

e1	j1	j2	j3	j4
$\begin{aligned} E_T &= 52 \\ GeV \\ \eta &= -0.51 \\ \phi &= 1.63 \\ Low-p_T \\ track \\ match \end{aligned}$	$E_T = 28$ GeV $\eta = 0.73$ $\phi = 3.82$	$E_T = 24$ GeV $\eta = 2.41$ $\phi = 1.62$	$E_T = 21$ GeV $\eta = 0.52$ $\phi = 5.80$	$E_T = 20$ GeV $\eta = -1.43$ $\phi = 4.60$

 $ME_{T} = 30 \text{ GeV}, M_{T}(e1+ME_{T}) = 79 \text{ GeV}$

300 pb⁻¹ \rightarrow roughly 4 \times our Run 1 top sample + significantly improved S/B from vertex b-tagging 2 fb⁻¹: $\delta m_t \approx 2.7$ GeV; 15 fb⁻¹: $\delta m_t \approx 1.3$ GeV (per expt.)

On the road to SUSY: understanding Missing E_T

- Use ME_T significance to take into account event topology, found vertices, and known resolutions
 - Low significance no physics ME_T
 - high significance ME_T not likely due to mismeasurement
- Monte Carlo can reproduce distributions:

Highest-Missing E_T di-em Candidate

 $\gamma\gamma$ +ME_T is a signature of gauge-mediated SUSY-breaking

y ×

EM1	EM2	
E_T = 27.4 GeV η = 0.52 ϕ = 3.78 Loose match with a low-	$E_{T} = 26.0 \text{ GeV}$ $\eta = 1.54$ $\phi = 5.86$ No track match	
p _T track		
$ME_{T} = 34.3 \text{ GeV}; M(diEM) = 53 \text{ GeV}$		

Missing E_T not consistent with a vertex mismeasurement, but can be explained by resolution effects.

Trilepton candidates

Trilepton events are a Run 2 SUSY discovery channel

 $\chi^{\pm}\chi^0$ production

With 2fb⁻¹, reach in $m\chi^{\pm}$ is \sim 180 GeV

e1	e2	e3
$E_T = 17.9 \text{ GeV}$ $p_T = 0.52 \text{ GeV}$ $\eta = 0.43$ $\phi = 5.42$ Charge = +1	$E_T = 13.9 \text{ GeV}$ $p_T = 10.9 \text{ GeV}$ $\eta = -1.94$ $\phi = 2.80$ Charge = +1	$E_T = 13.2 \text{ GeV}$ $p_T = 15.1 \text{ GeV}$ $\eta = 1.06$ $\phi = 5.72$ Charge = -1
$m_{e1e2} = 55.7$	$m_{e1e3} = 10.8$	$m_{e2e3} = 63.5$
$m_{e1e2e3} = 85.2 \text{ GeV/c}^2$ $ME_T = 10.7 \text{ GeV}$		

		0.0 3.7	
е		μ1	μ2
$E_T = 19$ GeV $\eta = 0.40$ $\phi = 0.60$ No track	0	$p_{T} = 28.2$ GeV $\eta = -0.10$ $\phi = 6.20$ Charge = -1	$p_{T} = 9.82$ GeV $\eta = -1.48$ $\phi = 2.88$ Charge = 1
match		$m_{\mu\mu} = 41$.5 GeV/c ²
	ME ₊ =31.8 GeV		

eμμ

Search for Extra Dimensions

400

diEM Mass. GeV

region

400

diEM Mass, GeV

0.2

- Search for large extra spatial dimensions through virtual graviton effects
- Follows DØ Run 1 analysis
 - mass and scattering angle maximize sensitivity
- Use both $\gamma\gamma$ and ee events to further increase sensitivity
- Kinematic cuts: E_te,γ > 25 GeV, use whole fiducial volume
- Background dominated by Drell-Yan and direct photon production
- Data agree qualitatively with the background predictions

100

200

300

Highest-mass (286 GeV) candidate event: forward topology, typical of background

EM1	EM2	
$\begin{split} E_T &= 91.1 \text{ GeV} \\ \eta &= -1.83 \\ \phi &= 1.79 \\ \text{Loose low p}_T \text{ SMT track} \\ \text{match} \end{split}$	$E_T = 67.1 \text{ GeV}$ $\eta = +0.60$ $\varphi = 4.65$ Loose low p_T CFT track match	
$M(diEM) = 286 \text{ GeV}; \cos\theta^* = 0.90; ME_T = 25.9$ GeV;		

For n=2 extra dimensions, DØ Run 1 limit on scale is 1.4 TeV

With 300 pb⁻¹, we probe ~ 1.6 TeV With 2 fb⁻¹, we probe up to 2 TeV

Outlook

- Enormous progress over the past year in installation, integration, commissioning of the detector and understanding the data
- Preliminary results are very encouraging and indicate that the DØ detector will be able to fully exploit the rich physics opportunities of Run 2
 - We are reconstructing electrons, muons, jets, missing E_T , J/ψ , W's and Z's
 - We know what needs to be done and we are working very hard to
 - commission the remaining detector elements and optimize detector, trigger and DAQ performance
 - understand calibration and alignment
 - improve selection and reconstruction procedures

We are on the way to exciting physics

backups

The Run 2 DØ Detector

- Builds on the firm foundation of the Run 1 calorimeter and central muon system
- Adds magnetic tracking, silicon, new forward muon system, new electronics and three level trigger

Tevatron Higgs mass reach

No guarantee of success, but certainly a most enticing possibility

Indirect Constraints on Higgs Mass

 Future Tevatron W and top mass measurements, per experiment

	Δm_W
2 fb ⁻¹	±27 MeV
15 fb ⁻¹	±15 MeV

	Δm_{t}
2 fb ⁻¹	±2.7 GeV
15 fb ⁻¹	±1.3 MeV

Impact on Higgs mass fit using $\Delta m_W = 20$ MeV, $\Delta m_W = 1$ GeV, $\Delta \alpha = 10^{-4}$, current central values M. Grünewald et al., hep-ph/0111217

